# Evaluation of telomere length in Brazilian workers exposed to construction environment



Paula Rohr<sup>1</sup>, Isabela Campanelli dos Santos<sup>1</sup>, Isana Rogrigues Silva<sup>1</sup>, Rui M Reis<sup>1, 2, 3</sup>, Fernando Barbosa Jr<sup>4</sup> and Henrique C S Silveira<sup>1,5</sup>

<sup>1</sup>Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil <sup>2</sup>Life and Health Sci Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal <sup>3</sup>ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal <sup>4</sup> School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil <sup>5</sup>University of Cuiabá, Mato Grosso, Brazil

#### INTRODUCTION

Construction environment is composed of various substances classified as carcinogens or potentially carcinogenic according to the International Agency for Research on Cancer, as crystalline silica and asbestos. Thus, in this study we evaluated the absolute telomere length (aTL) in construction workers in comparison with non-exposed group.

## **MATERIALS AND METHODS**

The aTL measurement was performed by quantitative real-time polymerase chain reaction (PCR) assay according to O' Callaghan and Fenech (2011). The determination of trace elements in blood samples was carried out with an inductively coupled plasma mass spectrometer (ICP-MS).

### RESULTS

The aTL was evaluated in 59 men exposed to the construction environment ( $39.00 \pm 13.00$  years old with 10 years of service time) and in 49 men non-exposed ( $32.00 \pm 10.00$  years old) from State of São Paulo, Brazil.





**Table 2.** Multiple linear models' regression to telomere lengthModel Construction Environment Exposure and Trace elements

| Variable                                                   | Regression<br>Coefficient (ß) | Confidence interval (95%) |        | n voluo |  |  |  |  |
|------------------------------------------------------------|-------------------------------|---------------------------|--------|---------|--|--|--|--|
|                                                            |                               | Lower                     | Upper  | p-value |  |  |  |  |
| Model Construction Environment Exposure and Trace elements |                               |                           |        |         |  |  |  |  |
| Worker                                                     |                               |                           |        |         |  |  |  |  |
| Non-Exposed                                                | -                             | -                         | -      | -       |  |  |  |  |
| Exposed                                                    | -67.64                        | -98.53                    | -36.74 | <0.001  |  |  |  |  |
| Arsenic                                                    |                               |                           |        |         |  |  |  |  |
| Arsenic concentration                                      | -3.12                         | -4.75                     | -1.50  | <0.001  |  |  |  |  |
| Lead                                                       |                               |                           |        |         |  |  |  |  |
| Lead concentration                                         | 1.14                          | 0.20                      | 2.09   | 0.019   |  |  |  |  |
| Constant                                                   | 194.79                        | 138.65                    | 250.93 | <0.001  |  |  |  |  |

**Table 1.** Multiple linear models' regression to telomere length. ModelConstruction Environment Exposure and Age

| Variable                                          | Regression<br>Coefficient (ß) | Confidence interval (95%) |        | n value |  |  |  |
|---------------------------------------------------|-------------------------------|---------------------------|--------|---------|--|--|--|
|                                                   |                               | Lower                     | Upper  | h-Aging |  |  |  |
| Model Construction Environment Exposure and Age a |                               |                           |        |         |  |  |  |
| Worker                                            |                               |                           |        |         |  |  |  |
| Non-Exposed                                       | -                             | -                         | -      | -       |  |  |  |
| Exposed                                           | -37.4                         | -67.39                    | -7.90  | 0.014   |  |  |  |
| Ages                                              |                               |                           |        |         |  |  |  |
| ≤ 39 years old                                    | -                             | -                         | -      | -       |  |  |  |
| ≥ 40 years old                                    | 21.58                         | -9.47                     | 52.63  | 0.171   |  |  |  |
| Constant                                          | 159.92                        | 104.12                    | 201.72 | <0.001  |  |  |  |

Dependent variable: aTL (kb/diploid genome). Bold values denote statistical significance at the p < 0.05 level. <sup>a</sup> Model in regarding to construction environment exposure and age ( $\leq$  39 /  $\geq$  40 years old).



**Figure 2**. Multiple linear model regression analysis to telomere length in regarding to trace elements concentration analyzed in blood.

## CONCLUSIONS

Therefore, construction environment exposure can influence telomere length, mainly by arsenic and lead exposure. Thus, our findings suggest a modulation in aTL by construction environment exposure.

FUNDINGS FAPESP (Proc. 2012/24279-1), Public Ministry of Labor Campinas, CAPES, Ministry of Health from Brazil