# Correlation Analyses Between Telomere Length and DNA Methylation Clocks

Emily Pearce<sup>1</sup>, Steve Horvath<sup>2</sup>, Shilpa Katta<sup>1,3,</sup> Casey Dagnall<sup>1,3,4,</sup> Geraldine Aubert<sup>5</sup>, Stephen Spellman<sup>6</sup>, Rotana Alsaggaf<sup>1</sup>, Shahinaz Gadalla<sup>1</sup> <sup>1</sup> Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, MD, <sup>2</sup> Department of Biostatistics, UCLA, CA, <sup>3</sup> Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, MD, <sup>4</sup> Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, <sup>5</sup> Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada, <sup>6</sup> Center for International Blood and Marrow Transplant Research, Minneapolis, MN

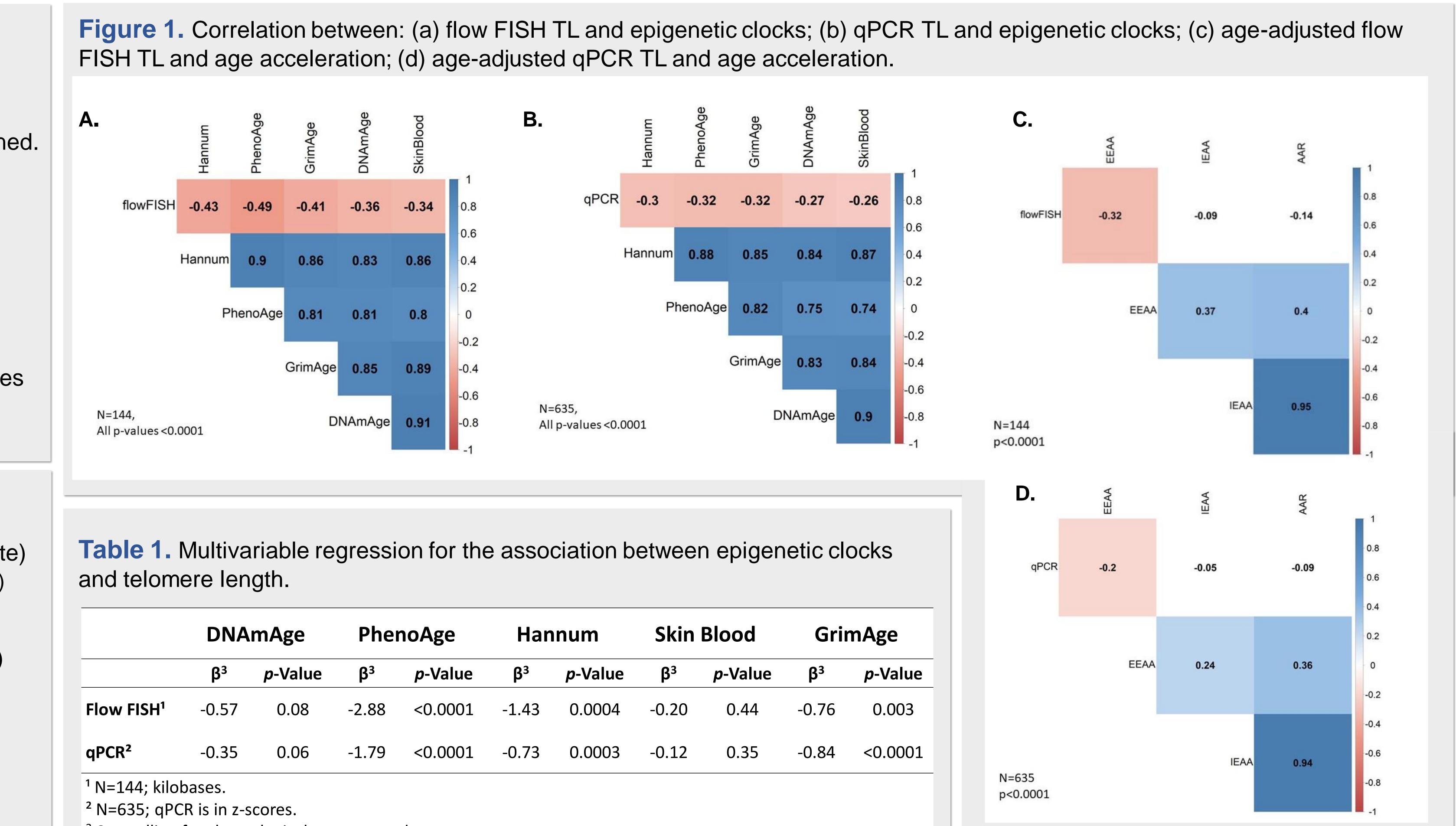
#### Introduction

- Biological age is a predictor for many health outcomes, but the relationship between biological markers of aging is still being defined.
- DNA methylation-based clocks (epigenetic clocks) and telomere length (TL) are both biological markers of aging, but their relationship is not fully understood.
- We examined the associations between five epigenetic clocks and two TL assays to investigate the relationship between measures of biological aging.

### Methods

- 635 healthy individuals (67% Male, 75% White)
- Chronological age 19-61 yrs (Median=35 yrs)

#### **TELOMERE LENGTH ASSAYS**


- **qPCR**: Average TL (T/S ratio z-score, n=635)
- **flow FISH**: Total lymphocyte TL (kb, n=144)

#### **EPIGENETIC CLOCKS**

- Based on Chronological Aging
- Hannum: Whole blood (71 CpGs)
- **DNAmAge**: Pan tissue (353 CpGs)
- **SkinBlood**: Buccal/blood/skin (391 CpGs)
- Based on Phenotypic Aging
- **PhenoAge**: Aging phenotypes (513 CpGs)
- **GrimAge**: All cause mortality (1030 CpGs)

### AGE ACCELERATION

- Age Acceleration Residual (AAR)
- Deviation from expected biological age (using DNAmAge) for chronological age
- Intrinsic Epigenetic Age Acceleration (IEAA) Controls for immune cell counts
- **Extrinsic Epigenetic Age Acceleration (EEAA)**
- Upweights immune cell counts



|                        | DNA                   | DNAmAge         |                       | PhenoAge        |                | Hannum          |                       | Skin Blood      |                       | GrimAge         |  |
|------------------------|-----------------------|-----------------|-----------------------|-----------------|----------------|-----------------|-----------------------|-----------------|-----------------------|-----------------|--|
|                        | <b>β</b> <sup>3</sup> | <i>p</i> -Value | <b>β</b> <sup>3</sup> | <i>p</i> -Value | β <sup>3</sup> | <i>p</i> -Value | <b>β</b> <sup>3</sup> | <i>p</i> -Value | <b>β</b> <sup>3</sup> | <i>p</i> -Value |  |
| Flow FISH <sup>1</sup> | -0.57                 | 0.08            | -2.88                 | <0.0001         | -1.43          | 0.0004          | -0.20                 | 0.44            | -0.76                 | 0.003           |  |
| qPCR <sup>2</sup>      | -0.35                 | 0.06            | -1.79                 | <0.0001         | -0.73          | 0.0003          | -0.12                 | 0.35            | -0.84                 | <0.0001         |  |

<sup>3</sup> Controlling for chronological age, sex, and race.

#### **Table 2.** Multivariable regression for the association between epigenetic age acceleration (using DNAmAge) and age-adjusted telomere length.

|                                     | AAR                   |                 | IE                    | AA              | EEAA                  |                 |
|-------------------------------------|-----------------------|-----------------|-----------------------|-----------------|-----------------------|-----------------|
|                                     | <b>β</b> <sup>3</sup> | <i>p</i> -Value | <b>β</b> <sup>3</sup> | <i>p</i> -Value | <b>β</b> <sup>3</sup> | <i>p</i> -Value |
| Age-Adjusted flow FISH <sup>1</sup> | -0.57                 | 0.08            | -0.38                 | 0.25            | -2.54                 | <0.0001         |
| Age-Adjusted qPCR <sup>2</sup>      | -0.35                 | 0.06            | -0.16                 | 0.35            | -1.56                 | <0.0001         |

## Conclusion

- aging.



• The relationship between TL and epigenetic clocks was mainly observed in clocks that reflect phenotypic age.

• TL association with the EEAA, but not other age acceleration, indicates the ability of both measures to identify immunosenescence.

 More research is warranted to understand the interplay between markers of biological