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Abstract

Telomeres, long nucleotide repeats and a protein complex at chromosome ends, shorten

with each cell division and are susceptible to oxidative damage. Quantitative PCR (qPCR) is

a widely-used technique to measure relative telomere length (RTL) in DNA samples but is

challenging to optimize and significant lab-to-lab variability has been reported. In this study,

we evaluated factors that may contribute to qPCR RTL measurement variability including

DNA extraction methods, methods used for removing potential residual PCR inhibitors,

sample storage conditions, and sample location in the PCR plate. Our results show that the

DNA extraction and purification techniques, as well as sample storage conditions introduce

significant variability in qPCR RTL results. We did not find significant differences in results

based on sample location in the PCR plate or qPCR instrument used. These data suggest

that lack of reproducibility in published association studies of RTL could be, in part, due to

methodological inconsistencies. This study illustrates the importance of uniform sample

handling, from DNA extraction through data generation and analysis, in using qPCR to

determine RTL.

Introduction

Telomeres are comprised of (TTAGGG)n nucleotide repeats and a protein complex that protect

chromosome ends [1]. They shorten with each cell division due to the inability of DNA poly-

merase to replicate the 3’ end of DNA. Telomere length (TL) in blood or buccal cell DNA has

been associated with cancer, heart disease, and several other illnesses [2–10].

Numerous TL measurement methods exist, each with advantages and limitations [11, 12].

PCR-based methods to measure TL are widely used because they require small amounts of

DNA and are often less labor intensive than other methods. There are currently three reported

methods to perform PCR analysis of TL: quantitative PCR (qPCR), monochrome multiplex

qPCR (MMqPCR), and absolute telomere length qPCR (aTLqPCR). The first, qPCR, utilizes

primers targeting the telomeric hexanucleotide repeats [13]. In the qPCR method, two separate

qPCR reactions are performed and the resulting amount of telomere amplicons (T) are
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compared to the amount of a single-copy gene amplicons (S) to generate the T/S ratio, result-

ing in a relative TL (RTL) rather than an absolute measure. The MMqPCR method performs

both the T and the S reactions in the same well, thus reducing pipetting precision as a variable

[14]. The aTLqPCR method adapted the original qPCR method to determine a base pair esti-

mate of average TL by using a standard curve of synthesized telomeric repeat sequence oligo-

nucleotide diluted to a known TL [15].

The original qPCR method, published in 2002, is the most widely used in large-scale stud-

ies, but has known variability within and between batches and lacks reference standards that

are necessary to ensure consistency of results [11]. The correlation between qPCR RTL with

other TL measurement methods, including terminal restriction fragment analysis (TRF) and

flow cytometry with fluorescent in situ hybridization (flow FISH), varies with correlation coef-

ficients (R2) ranging from 0.1 to 0.99 [13, 16–20]. Many association studies using qPCR RTL

measurement have not reported important details, such as DNA extraction methods, specific

reagents and single copy loci used, as well as method of RTL value generation [12]. Others

have shown that the DNA extraction method [21–26], tissue fixation method [27], and well

position [28] are possible sources of variability in qPCR RTL measurement.

To address the factors contributing to qPCR RTL variability, we comprehensively evaluated

the effects of DNA extraction method, PCR inhibitor removal methods, sample storage condi-

tions, and sample location in the PCR plate.

Materials and methods

DNA extraction methods

Buffy coat specimens from 48 subjects, in the Research Donor Program at the Frederick

National Laboratory for Cancer Research, were mixed thoroughly and split into three equal

volume aliquots. Each homogenous aliquot was then extracted via QIAamp DNA Blood Midi

Kit (Qiagen, Germantown, MD), QIAsymphony DNA Midi Kit (Qiagen), and ReliaPrep Large

Volume HT gDNA Isolation System (Promega, Madison, WI). The QIAsymphony and Relia-

Prep kits utilize magnetic bead/particle-based methods, while the QIAamp kit uses silica-

membrane-based nucleic acid purification method. The DNA was quantified with Quant-iT

PicoGreen dsDNA quantitation (Life Technologies, Grand Island, NY).

qPCR relative telomere length assay

DNA samples were transferred into 96-well plates and the concentration normalized to 1 ng/

uL. We also randomly placed no template control (NTC) and internal quality control (QC)

sample replicates, NA07057 (Coriell Cell Repositories, Camden, NJ), as calibrator samples.

Four uL of DNA (4 ng) was then transferred, in triplicate, into quadrants 1, 2, and 3 of Light-

Cycler-compatible 384-well plates (Roche, Indianapolis, IN) and a standard curve [6 concen-

trations of pooled reference DNA samples prepared by serial dilution (4 to .04096 ng/uL)] was

added to quadrant 4 of each 384-well plate, all samples were dried down. This resulted in all

experimental and control samples being assayed in triplicate on each 384-well plate for both T

and S assays. All pipetting steps were performed using a Biomek FX (Beckman Coulter, India-

napolis, IN) liquid handler calibrated to perform transfers from 2–50 uL with a coefficient of

variation (CV) of<5%.

Primers for the telomeric assay were Telo_FP [5’-CGGTTT(GTTTGG)5GTT-3’] and

Telo_RP [5’-GGCTTG(CCTTAC)5CCT-3’] [29] and for the single-copy gene (36B4) assay

were 36B4_FP [5’-CAGCAAGTGGGAAGGTGTAATCC-3’] and 36B4_RP [5’-CCCATTCTA
TCATCAACGGGTACAA-3’] [13]. Primers (Integrated DNA Technologies, Coralville, IA)

were manufactured LabReady (normalized to 100 uM in IDTE, pH 8.0 and HPLC Purified).
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One μM assay mixes for each target were generated by combining 990 uL of 1X Tris-EDTA

Buffer with 5 uL of forward oligo and 5 uL of reverse oligo.

PCR was performed using 5 uL reaction volumes consisting of: 2.5 uL of 2X Rotor-Gene

SYBR Green PCR Master Mix (Qiagen), 2.0 uL of MBG Water, and 0.5 uL of 1 μM assay-spe-

cific mix. Thermal cycling was performed on a LightCycler 480 (Roche) where PCR conditions

were (i) T (telomeric) PCR: 95˚C hold for 5 minutes (min), denature at 98˚C for 15 seconds,

anneal at 54˚C for 2 min, with fluorescence data collection, 35 cycles and (ii) S (single-copy

gene, 36B4) PCR: 98˚C hold for 5 min, denature at 98˚C for 15 seconds, anneal at 58˚C for 1

min, with fluorescence data collection, 43 cycles.

LightCycler software (Release 1.5.0) was used to generate Ct values, utilizing absolute quan-

tification analysis with the second derivative maximum method and high sensitivity detection

algorithm. Ct values or replicates were averaged, if they met a coefficient of variation (CV)

threshold of less than 2%. The concentration (ng/uL) was interpolated from the plate-specific

standard curve’s exponential regression [Average Ct and log2 (Concentration)]. Any samples

with 36B4 concentrations falling outside the range of the standard curve are dropped from fur-

ther analysis as a T/S ratio cannot be accurately calculated. The telomere (T) concentration

was divided by the 36B4 concentration (S) to yield a raw T/S ratio. The raw T/S ratio is divided

by the average raw T/S ratio of the internal QC calibrator samples, within the same plate set, to

yield a standardized T/S ratio that normalized results in reference to the same individual.

Evaluation of assay reproducibility

A single sample, the internal QC calibrator sample, was diluted to 1 ng/uL and then aliquoted

into every well of a 96-well intermediate plate. This intermediate plate was used to aliquot this

single sample, in triplicate, to twelve 384-well assay plates. Six assay plates were prepared with

the Telomere assay and six with the 36B4 assay. Two plates for each assay were thermal cycled

on three different LightCyclers.

DNA purification

After determining the baseline RTL, we applied three different DNA purification methods on

30 DNA samples from 10 subjects, extracted as described above (3 DNA samples/subject using

different extraction techniques). The 30 DNA samples were mixed thoroughly and three 500

ng aliquots were created, which were purified using ethanol (EtOH) precipitation, MinElute

(Qiagen), a silica-membrane-based purification, and AMPureXP (Beckman Coulter), a mag-

netic bead-based DNA capture method, creating 90 samples for qPCR analysis.

DNA storage temperature and concentration

We determined the baseline RTL of 50 different DNA samples and then subjected aliquots of

these samples to different storage conditions for 6 months: 4˚C at 25 ng/uL, 4˚C at 1 ng/uL,

-30˚C at 25 ng/uL, and -30˚C at 1 ng/uL.

Results

Well position and assay reproducibility

We first evaluated the reproducibility of the qPCR assay by measuring RTL on a single DNA

sample aliquoted into a 96-well intermediate plate, then into 384-well plates for qPCR (S1

Dataset). The average amplification efficiency for the Telo assay was 96.66%, with a CV of

0.14% and for the 36B4 assay was 97.44%, with a CV of 0.25%. The average standardized T/S

ratio for all RTL results (n = 576) was 1.00 and the CV was 2.20%. Three different Light Cyclers
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were used to determine whether there was machine-to-machine variability. We ran 192 repli-

cates on each LightCycler and found average standardized T/S ratios of 0.99, 1.00, and 1.00

with respective CVs of 2.58%, 1.79%, and 2.17%. Overall, the RTL results were reproducible

and had little variability both within and across plates, run on various instruments.

Evaluation of DNA extraction method

The median and range of RTL of buffy coat DNA varied by extraction method (Fig 1, S2 Dataset).

The QIAamp RTL median T/S ratio was 0.58 (range 0.39–0.87). QIAsymphony median T/Swas

0.53 (range 0.29–0.74) and the ReliaPrep median was 0.74 (range 0.51–1.46). The median RTL dif-

ferences between QIAamp and QIAsymphony or ReliaPrep, as determined by Wilcoxon signed

rank test for paired samples, were statistically significant (p = 0.001,<0.001, respectively). For

these samples, the CV for internal control replicates (n = 41) standardized T/S ratio was 5.13%.

Correlation of RTL for the 48 matched subjects between extraction methods was modest (R2 =

0.40, 0.54, and 0.54) as was Spearman’s rank-order correlation (ρ = 0.53, 0.67, and 0.56) (Fig 2).

Evaluation of DNA purification techniques

The 30 DNA samples, three extraction methods from 10 matched subjects, underwent three

different DNA purification methods (S3 Dataset). The CV for internal control replicates

(n = 10) standardized T/S ratios was 8.01%. The magnitude of correlation was attenuated (R2

= 0.68, ρ = 0.78) after the samples underwent additional purifications. When evaluating each

inhibitor removal technique, the correlations of RTL of non-purified DNA to RTL after each

purification type change slightly to, R2 = 0.80, 0.76, and 0.59 (ρ = 0.88, 0.85, and 0.71) for

MinElute, AMPureXP, and EtOH, respectively (Fig 3). The AMPureXP and MinElute tech-

niques maintain a stronger correlation to results prior to purification than those of the EtOH

technique, but each purification technique appears to affect the dynamic range differently, as

indicated by the slope and intercept differences. The effect of DNA purification technique was

independent of the DNA extraction technique for AMPureXP and MinElute. However, the

EtOH purification technique for samples extracted via Promega ReliaPrep showed a stronger

correlation post-purification (R2 = 0.77, ρ = 0.83) than those samples from the same subject

extracted via QIAamp (R2 = 0.24, ρ = 0.47) and QIAsymphony (R2 = 0.38, ρ = 0.59).

Evaluation of storage temperature and concentration

For this experiment, the CV for internal control replicates (n = 10) standardized T/S ratio was

6.03%. Samples stored at 25 ng/uL maintained strong correlations to the original results after 6

Fig 1. Extraction techniques contribute to differences in dynamic range of relative telomere length. (Top) Dynamic range of RTL (standardized T/S

ratio) by extraction technique in matched samples from the same subjects, median marked by black bar and (Bottom) count of samples, median standardized

T/S ratio, range of standardized T/S ratio, and p-value for Wilcoxon signed rank test for paired samples by each extraction technique.

https://doi.org/10.1371/journal.pone.0184098.g001
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months at both 4˚C (R2 = 0.86) and -30˚C (R2 = 0.84) storage temperatures. Samples normal-

ized to 1 ng/uL were very weakly correlated to their original results when stored at 4˚C (R2 =

0.11) and only moderately correlated when stored at -30˚C (R2 = 0.49) (Fig 4, S4 Dataset).

Discussion

There is accumulating evidence that certain pre-analytic variables may be important in assur-

ing reliability of the qPCR RTL measurements [12, 17, 21–23, 27]. Here, we assessed some of

these variables including extraction technique, inhibitor removal technique, sample storage

conditions, and assay plate location. Our results show that DNA extraction method, inhibitor

removal techniques, and sample storage conditions significantly contribute to variability in

RTL, while location of the sample on the assay plate has no or minor effect as previously

observed [28].

Our data further illustrate the importance of using one DNA extraction method for an

entire study. Alternatively, a DNA extraction method-specific calibrator could be used if

Fig 2. Correlation of relative telomere length (standardized T/S ratio) of matched subjects across extraction techniques and assay techniques.

Inset heat map displays coefficient of determination (R2) for each correlation.

https://doi.org/10.1371/journal.pone.0184098.g002
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multiple extraction methods are planned, as recently described [26]. We confirmed that the

use of different DNA extraction technique introduces variability in RTL measurement. Find-

ings from previous studies evaluated DNA extraction techniques across different methodolo-

gies (either solid phase adsorption, magnetic bead adsorption, precipitation, or phenol-

Fig 3. Correlation of relative telomere length (standardized T/S ratio) of matched samples pre- and post-

purification. (Top) All samples by purification technique. (Bottom) By purification technique and extraction

technique, shown by color, for 10 matched subjects extracted using three different techniques.

https://doi.org/10.1371/journal.pone.0184098.g003

Pre-analytic variables affect qPCR relative telomere length

PLOS ONE | https://doi.org/10.1371/journal.pone.0184098 September 8, 2017 6 / 10

https://doi.org/10.1371/journal.pone.0184098.g003
https://doi.org/10.1371/journal.pone.0184098


chloroform) [21–23]. Here, we show that variability is also present between DNA extraction

kits that use the same methodology. Specifically, we compared two different magnetic bead

adsorption techniques (ReliaPrep and QIAsymphony) and showed that they not only had dif-

ferent dynamic ranges, but also had poor correlation of RTL in biological replicates.

Our data also demonstrated that variability can also be introduced in RTL by different

inhibitor removal (purification) techniques, which are often necessary due to substances

intrinsic to specific biological source materials or introduced during extraction or processing

[30]. This variability further illustrates the importance of processing all samples within a study

in the same manner.

The observed variability in RTL introduced by DNA sample storage temperature and con-

centration is not surprising as it is known that low concentration solutions of DNA are prone

to DNA degradation or other loss over time [31]. However, the extent to which these factors

Fig 4. Correlation of relative telomere length (standardized T/S ratio) of same samples after 6 months at various concentrations and storage

temperature conditions. (a) 1 ng/uL at 4˚C, (b) 1 ng/uL at -30˚C, (c) 25 ng/uL at 4˚C, and (d) 25 ng/uL at -30˚C.

https://doi.org/10.1371/journal.pone.0184098.g004
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directly affect the telomeric repeat sequences in comparison to that of other regions of the

genome, such as the single copy gene (36B4) is not known. This finding also suggests that

internal controls utilized for assessment of reproducibility are subject to the same limitations.

In summary, this study shows that pre-analytic factors, including DNA extraction, purifica-

tion, and storage introduce significant variability in qPCR RTL measurements. Our data show

that studies with different pre-analytic methods may not be directly comparable. Therefore,

we recommend that these factors be consistent within studies and that multiple replicates

within and across studies are used. Researchers should strongly consider validating significant

associations between qPCR RTL and disease in a different laboratory and, ideally, with a differ-

ent measure of TL measurement.

Supporting information

S1 Dataset. Well position for assay reproducibility. Dataset contains 384-well plate descrip-

tor (A, B, C), Well Position, Sample ID, LightCycler instrument number, and standardized T/S

Ratio for the experiment regarding well position and assay reproducibility.

(XLSX)

S2 Dataset. DNA extraction method. Dataset contains blinded subject ID, extraction method

utilized and standardized T/S Ratio for the experiment regarding DNA extraction method.

(XLSX)

S3 Dataset. DNA purification technique. Dataset contains blinded subject ID, extraction

method utilized, purification technique utilized and standardized T/S ratio for the experiment

regarding DNA purification technique and extraction method.

(XLSX)

S4 Dataset. Storage temperature and concentration. Dataset contains sample ID, standard-

ized T/S ratio of initial analysis, standardized T/S ratio of analysis post-storage (6 months

later), storage temperature (˚C) and concentration of DNA (ng/uL) prior to storage.

(XLSX)
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