JOINT EFFECTS OF PRENATAL EXPOSURE TO PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS) AND POLYBROMINATED DIPHENYL ETHERS (PBDE) ON MATERNAL AND NEWBORN TELOMERE LENGTH

Stephanie Eick, PhD, MPH stephanie.eick@ucsf.edu

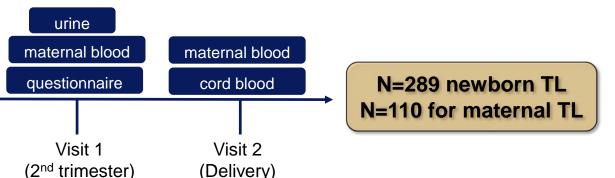
Per- and poly- fluoroalkyl substances (<u>PFAS</u>) & Polybrominated diphenyl ethers (<u>PBDEs</u>)

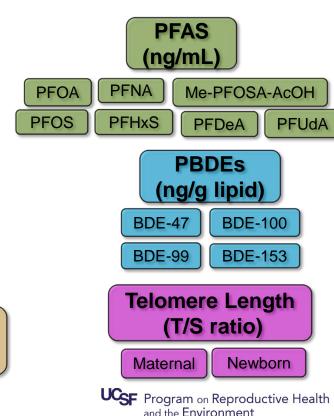
- Present in nonstick cookware, food containers, fire fighting foam, furniture, textiles, etc.
- Bioaccumulate and ≥98% of individuals in US have detectable PFAS levels
- New chemicals constantly phased in, not regulated
- Detectable in cord blood and placenta

SHORTERN NEWBORN TELOMERE LENGTH ASSOCIATED WITH ENVIRONMENTAL CHEMICALS

- Arsenic
- Phthalates
- Metals
- PFAS (adult populations)

RESEARCH GAPS

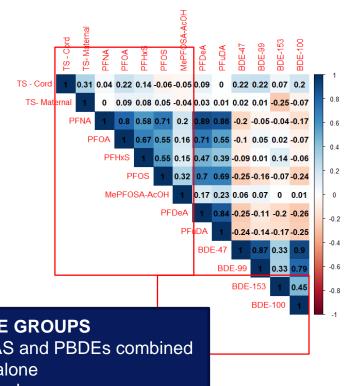

- Effects on maternal telomeres?
- Simultaneous exposure to multiple chemicals??



RESEARCH QUESTION: Is prenatal exposure to PFAS and PBDEs associated with maternal and newborn telomere length?

CHEMICALS IN OUR BODIES BIRTH COHORT

- · Based in San Francisco, CA
- Designed to examine joint effects of chemicals and non-chemical stressors
- Recruitment since 2014
- Key features:
 - Extensive stress questionnaire
 - Demographically diverse


STUDY POPULATION

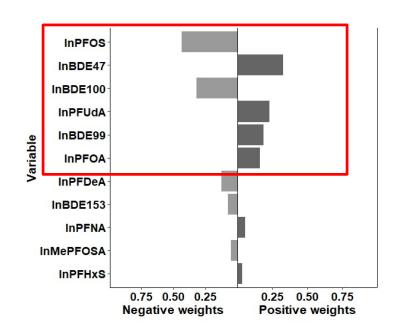
	Newborn (N=289)	Maternal (N=110)
	%	%
Maternal Education		
Less than High School	9	13
High School Degree or Some College	20	21
College Degree	27	31
Graduate Degree	44	34
Maternal Race/Ethnicity		
Non-Hispanic White	43	42
Non-Hispanic Black	3	4
Asian/Pacific Islander	21	15
Latina	29	35
Other	3	5
Parity		
No Prior Births	55	46
One or More Prior Births	45	54

- Mean maternal age was 34 years
- Mean gestational age at delivery was 39 weeks
- Mean pre-pregnancy BMI was 25 kg/m²

MIXTURE METHODS

- Quantile g-computation
 - Estimates the effect of simultaneously increasing all exposures in the mixture by one quantile
 - Bi-directional exposure-outcome relationships
 - Individual PFAS and PBDEs are given positive or negative weight

3 MIXTURE GROUPS


- All PFAS and PBDEs combined
- PFAS alone
- PBDEs alone

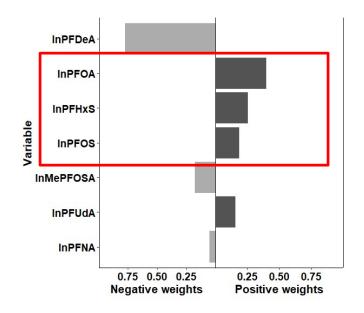
Newborn Telomere Length			
	β	95% CI	
Overall	0.04	(-0.01, 0.09)	
PFAS	0.01	(-0.03, 0.05)	
PBDEs	0.04	(0.00, 0.07)	

Beta estimates are interpreted as the effect on telomere length of increasing every exposure in the mixture by one quantile.

Adjusted for age, race/ethnicity, education, prepregnancy BMI, and parity

Increasing PFAS and PBDEs associated with longer <u>newborn</u> telomeres

Weights correspond to overall mixture model


Negative and positive weights both sum to 1 and correspond to the effect size relative to other effects in the same direction and should not be directly compared.

Maternal Telomere Length			
	β	95% CI	
Overall	0.03	(-0.03, 0.09)	
PFAS	0.04	(-0.01, 0.09)	
PBDEs	-0.02	(-0.06, 0.01)	

Beta estimates are interpreted as the effect on telomere length of increasing every exposure in the mixture by one quantile.

Adjusted for age, race/ethnicity, education, prepregnancy BMI, and parity

Increasing PFAS, not PBDEs, associated with longer <u>maternal</u> telomeres

Weights correspond to <u>PFAS alone</u> mixture model

Negative and positive weights both sum to 1 and correspond to the effect size relative to other effects in the same direction and should not be directly compared.

STRENGTHS

- Demographically and racial/ethnically diverse study population
- Mixture methods better reflect "real life" exposures

LIMITATIONS

Small sample size

CONCLUSIONS

- PFAS and PBDEs associated with longer newborn telomere length
- Associations primarily driven by PBDEs
- PFAS moderately associated with longer maternal telomeres

THANK YOU

CIOB STUDY PARTICIPANTS, LEADSERSHIP, AND RESEARCH TEAM

Dana Goin, UCSF Lara Cushing, UCLA Amy Padula, UCSF Tracey Woodruff, UCSF Rachel Morello-Frosch, UC Berkeley

ANALYTIC LABORATORY

Environmental Chemical Laboratory, DTSC Blackburn Lab, UCSF

FUNDING

USEPA RD83543301 NIEHS P01ES022841 NIH ECHO UG3OD023272 and UH3OD023272

