Associations between newborn telomere length and adiposity in the first decades of life

Farah Qureshi, ScD Postdoctoral Research Fellow Harvard T.H. Chan School of Public Health

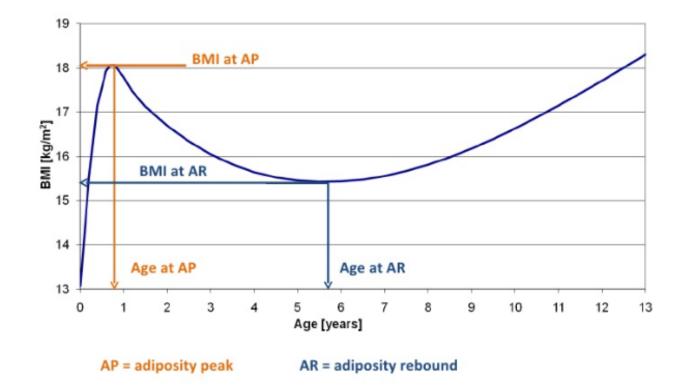
Contact: fqureshi@mail.harvard.edu | @fqureshi_epi

Early Programming of Health and Disease

- Cardiometabolic conditions have origins that trace back to the prenatal period (Barker 2004)
- Telomere biology is a potential mechanism by which fetal programming of adult disease occurs (Entringer, et al., 2018)
- Newborn telomeres serve as an "initial setting" that influences telomere biology across the lifespan
- They are also believed to be important sentinels for disease, but evidence from prospective studies is lacking

Study Aim

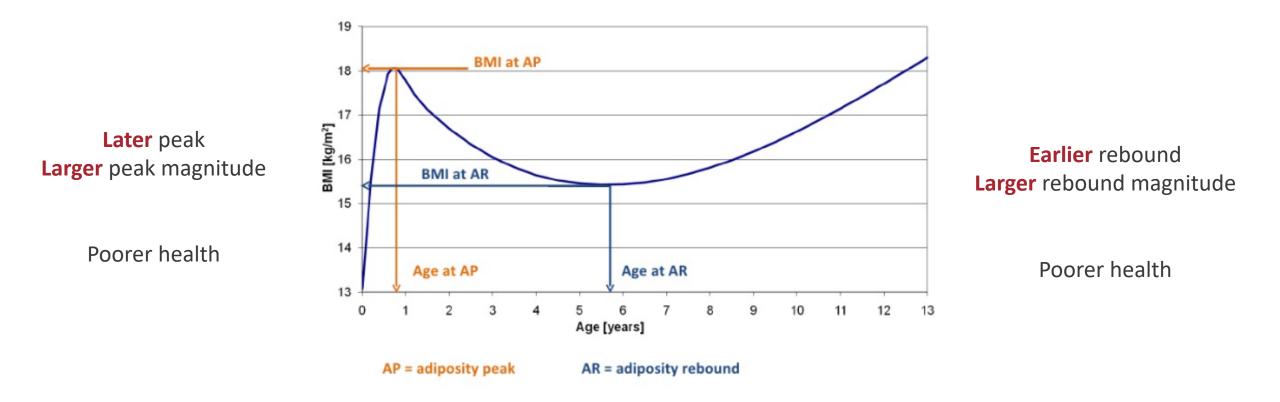
• To examine associations between newborn TL and trajectories in adiposity from birth to adolescence


Study Aim

 To examine associations between newborn TL and trajectories in adiposity from birth to adolescence

Clinically relevant markers of later life risk

Adiposity Trends in the First Decade of Life



Source: Sovio, et al., 2010

BMI Growth Patterns

Peak and Rebound

Source: Sovio, et al., 2010

Hypotheses

- To examine associations between newborn TL and trajectories in adiposity from birth to adolescence
- Shorter telomeres will be associated with:
 - 1. Higher levels of adiposity over time
 - 2. A later age of BMI peak
 - 3. An earlier age of BMI rebound

Project Viva

A study of Health for the Next Generation

- On-going birth cohort based in eastern Massachusetts
- N=2,128 singleton liveborn children recruited prenatally in 1999-2002
- Followed from fetal life to late adolescence
- Predominantly white, socioeconomically advantaged
- Telomere length obtained from cord blood of 444 children at birth
- Analytic sample: N=375 children with valid telomere length data and available BMI growth data

Relative Telomere Length (RTL)

- Telomere/single copy gene (albumin) ratio
- Measures obtained in triplicate via qPCR
- Analyses accounted for correlations between measurements obtained from the same sample plate
- T/S ratio analyzed two ways:
 - Continuous standardized measure (per 1-SD shorter)
 - Binary measure of "shorter TL" defined as T/S ratio ≤1.0

Adiposity

- BMI measurements collected in Viva exams at 6 mo, 3y, 7y, 13y, and from medical records from well-child visits from birth to age 18
- Repeated assessments were used to quantify the age and magnitude of BMI peak and BMI rebound (Aris, et al., 2018; Aris, et al., 2019)
- Subsample of 199 children had direct measures of total and abdominal fat mass obtained at 7y and 13y via whole-body DXA scan
 - Considered individually and as a change score (standardized)

Covariates Considered for Inclusion

- Race/ethnicity
- Parental education (college or higher)
- Yearly household income (≥\$70,000)
- Gestational age at birth
- Birthweight for sex and gestational age z-scores

- Mother's age
- Father's age
- Mother's BMI
- Father's BMI
- Pregnancy characteristics
 - Parity
 - Smoking status
 - Diabetes-related condition
 - Hypertension –related condition

Covariates Considered for Inclusion

• Race/ethnicity

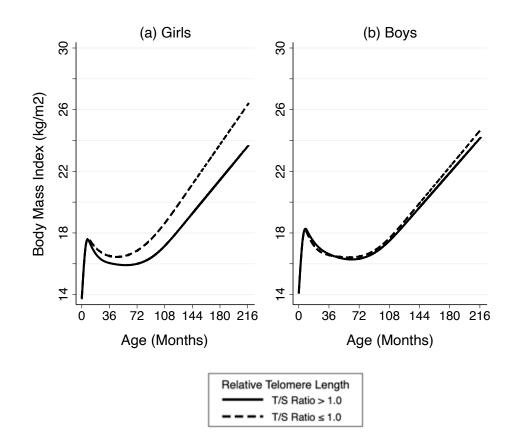
- Mother's age
- Parental education (college or Father's age
- higher)
 Yearly (≥\$70,)
 No substantive associations observed with RTL so all analyses were unadjusted
- Gestational age at birth
- Birthweight for sex and gestational age z-scores

- riegnancy characteristics
 - Parity
 - Smoking status
 - Diabetes-related condition
 - Hypertension –related condition

Statistical Analyses

- Plotted BMI growth patterns by RTL using mixed effects models with natural cubic spline functions
- Generalized estimating equations (GEE) with a gaussian distribution evaluated links between RTL and BMI growth
- Sensitivity analyses also used GEE to examine directly assessed adiposity measures
- All analyses were stratified by sex and interactions were tested

BMI Peak (BMIP)


- Continuous RTL not related to any BMIP measure for boys or girls
- No associations between shorter RTL and magnitude of BMIP
- Shorter RTL associated with later age of BMIP for girls only (p<0.05)
 - β_{girls}=0.99 (0.16, 1.82)
 - β_{boys}=0.04 (-0.36, 0.44)

BMI Rebound (BMIR)

- Continuous RTL not related to any BMIR measure for boys or girls
- No associations between shorter RTL and magnitude of BMIR
- Shorter RTL associated with earlier of BMIR for both boys and girls:
 - 4.2 months for girls
 - 7.3 months for boys
- No evidence of sex interaction

Shorter RTL Related to More Fat Mass in Girls

Table: Unadjusted associations between $RTL \le 1.0$ and directly assessed fat mass measurements, stratified by sex (N=199).*

	Age 7		Age 13	
	β (95% CI)	р	β (95% CI)	р
Total Fat Mass, kg/m ²				
Boys	0.08 (-0.41, 0.58)	0.74	0.05 (-0.95, 1.04)	0.93
Girls	0.83 (0.09, 1.56)	0.027	1.90 (0.59, 3.20)	0.004
Abdominal Fat Mass, kg/m ²				
Boys	0.06 (-0.16, 0.29)	0.59	-0.05 (-0.51, 0.41)	0.82
Girls	0.38 (0.04, 0.73)	0.029	0.92 (0.24, 1.60)	0.008

* Red indicates gender interaction *p*<0.05

Shorter RTL Related to More Fat Mass in Girls

Table: Unadjusted associations between $RTL \le 1.0$ and directly assessed fat mass measurements, stratified by sex (N=199).*

	Age 7		Age 13		
	β (95% CI)	р	β (95% CI)	р	
Total Fat Mass, kg/m ²					No substantial
Boys	0.08 (-0.41, 0.58)	0.74	0.05 (-0.95, 1.04)	0.93	associations
Girls	0.83 (0.09, 1.56)	0.027	1.90 (0.59 <i>,</i> 3.20)	0.004	with changes in fat mass
Abdominal Fat Mass, kg/m ²					Idt Mdss
Boys	0.06 (-0.16, 0.29)	0.59	-0.05 (-0.51, 0.41)	0.82	
Girls	0.38 (0.04, 0.73)	0.029	0.92 (0.24, 1.60)	0.008	

Summary of Key Findings

- No associations between continuous RTL and BMI growth milestones
- Shorter RTL (T/S ratio ≤1.0) were associated with later BMI peak and earlier rebound
- Associations generally stronger for girls (BMI peak)
- Shorter RTL also associated with greater fat mass for girls only
- Shorter RTL not related to change in fat mass, but a small association between continuous RTL and increases in fat mass was noted in girls

Thank You!

Acknowledgements

- Project Viva participants
- Research staff

Funding Sources

- TRN Pilot Award
- NIH (T32 CA 009001)

Project Mentors

- Henning Tiemeier (Harvard)
- Mandy Belfort (BWH)

Co-authors

- Izzuddin Aris (Harvard)
- Sheryl Rifas-Shiman (Harvard)
- Wei Perng (U Colorado)
- Emily Oken (Harvard)
- Janet Rich-Edwards (Harvard)
- Andres Cardenas (UC Berkeley)
- Michelle Bosquet Enlow (Boston Children's)

